Johnson’s Algorithm

47th Friday Fun Session – 19th Jan 2018

We have seen why Dijkstra’s algorithm cannot work with negative edge and that we cannot trivially add a constant to each of the edge weights and make them non-negative to proceed further. It is where Johnson’s algorithm comes into play. It finds a special set of offset values to remove the negative edges (change the negative edge weights to non-negative edge weights) and now this transformed graph is all set to work with Dijkstra’s algorithm.

How Does Johnson’s Algorithm work?

Johnson’s algorithm starts with a graph having negative edge(s). Let’s go through it using an example as shown below.

1

Add a New Node

It then adds a new vertex, let’s call it s, with edges starting from it and ending to each of the vertices of the existing graph, each having a cost of 0, as we have done earlier.

2.png

Apply Bellman-Ford

Then it applies Bellman-Ford, a Single Source Shortest Path (SSSP) algorithm that can work with a graph having negative edge(s). We will use s as the source, and find shortest path from it to all other vertices.

We also need to check whether a negative cycle exists, something that Bellman-Ford can detect. If it exists then we cannot proceed further as we cannot find shortest path in a graph with negative cycle. In our example graph, there is no negative cycle.

We find d[s, 1] = 0, d[s, 2] = -30, and d[s, 3] = 0 as shown below, using this code where d[s, t] indicates the shortest path from s to t.

3.png

Adjust Original Edge Weights

Now using these shortest path costs, original edges will be updated using the formula: w’[u, v] = w[u, v] + d[s, u] – d[s, v]. Applying the same for the original 3 edges in the original graph, we find,

w’[1, 2] = w[1, 2] + d[s, 1] – d[s, 2] = 20 + 0 – (-30) = 50

w’[1, 3] = w[1, 3] + d[s, 1] – d[s, 3] = 40 + 0 – 0 = 40

w’[3, 2] = w[3, 2] + d[s, 3] – d[s, 2] = (-30) + 0 – (-30) = 0

Now that we have adjusted the original edge costs, the new (cost) adjusted graph (without s and associated edges) does not have any more negative edge. Let’s see how the cost adjusted graph looks like.

4

Apply Dijkstra

With this non-negative edge graph we can proceed with Dijkstra’s algorithm. For each shortest path found in this graph from u to v, we have to adjust back the cost by subtracting d[s, u] – d[s, v] from it.

Is the Shortest Path Still the Same?

We are adjusting edge cost to remove negative edge. That way, we are changing the graph to some extent. However, while doing so we must preserve certain things of it. What was the cheapest cost in the original graph must still remain the cheapest path in the transformed graph. Let’s first verify whether that is indeed the case.

We will first look at the original graph (before edge cost adjustment). Let’s take a certain source destination pair (1, 2). There are two paths to reach from vertex 1 to vertex 2.

The first one (original):

d1[1, 2]

= from vertex 1 to vertex 2 directly using edge 1->2

= 20.

The second one (original):

d2[1, 2]

= from vertex 1 to 3 and then from 3 to 2

= 40 + (-30)

= 10.

Now let’s see how the costs of the same two paths change in the new cost adjusted graph.

The first one (cost adjusted):

d’1[1, 2]

= from vertex 1 to vertex 2 directly using edge 1->2

= 50.

The second one (cost adjusted):

d’2[1, 2]

= from vertex 1 to 3 and then from 3 to 2

= 40 + 0

= 40.

We see both the path costs have increased by 30, a constant. So what was earlier the shortest from vertex 1 to vertex 2, in the original graph, which was the second path, using two edges: edge 1->3 and edge 3->2, still remains the shortest path in the cost adjusted graph.

So how did that happen? Let’s have a closer look as to how the path cost changes.

The first one (cost adjusted):

d’1[1, 2]

= w’[1, 2]

= w[1, 2] + d[s, 1] – d[s, 2]

= d1[1, 2]  + d[s, 1] – d[s, 2]

The second one (cost adjusted):

d’2[1, 2]

= w’[1, 3] + w’[3, 2]

= w[1, 3] + d[s, 1] – d[s, 3] + w[3, 2] + d[s, 3] – d[s, 2]

= w[1, 3] + d[s, 1] + w[3, 2] – d[s, 2]

= w[1, 3] + w[3, 2] + d[s, 1] – d[s, 2]

= d2[1, 2] + d[s, 1] – d[s, 2]

So we see both the paths, with a certain source u and a certain destination v, have increased with a constant cost = d[s, u] – d[s, v], where s is the extra node that we added before applying Bellman-Ford algorithm.

We can easily find, no matter how many paths are present between a certain source s and a certain destination v, and no matter how many edges each of those paths uses, each of them would be adjusted by adding a constant cost = d[s, u] – d[s, v] to it. And hence, the shortest path in the original graph remains the shortest path in the new cost adjusted, non-negative edge graph.

Let’s consider a path that goes through 5 vertices: u, x1, x2, x3, and v.

In the cost adjusted graph the cost

d’[u, v]

= w’[u, x1] + w’[x1, x2] + w’[x2, x3] + w’[x3, v]

= w[u, x1] + d[s, u] – d[s, x1] + w[x1, x2] + d[s, x1] – d[s, x2] + w[x2, x3] + d[s, x2] – d[s, x3] + w[x3, v] + d[s, x3] – d[s, v]

= w[u, x1] + d[s, u] + w[x1, x2] + w[x2, x3] + w[x3, v] – d[s, v]

= w[u, x1] + w[x1, x2] + w[x2, x3] + w[x3, v] + d[s, u] – d[s, v]

= d[u, v] + d[s, u] – d[s, v]

By generalizing the above, we see that a constant cost d[s, u] – d[s, v] is getting added to all paths from u to v.

Are all Negative Edge Removed?

The second thing that we need to prove is: no longer there exists a negative edge in the adjusted graph. After applying Bellman-Ford, we computed the shortest paths from source s. Let’s assume, d[s, u] and d[s, v] are the shortest paths from s to any two vertices, u and v, respectively. In that case, we can say,

d[s, v] <= d[s, u] + w[u, v]

=> 0 <= d[s, u] + w[u, v] – d[s, v]

=> 0 <= w[u, v] + d[s, u] – d[s, v]

=> 0 <= w’[u, v]

We prove that the new edge cost, w’[u, v] is always non-negative.

Why Would We Use Johnson’s algorithm?

So here with Johnson’s algorithm, first we use Bellman-Ford to get a set of values; using which we transform the graph with negative edge to a graph with all non-negative edges so that we can apply Dijkstra’s algorithm.

But why would anyone want to do that? After all, both Bellman-Ford and Dijkstra are SSSP algorithms. What is the point of using one SSSP algorithm to transform a graph so that another SSSP algorithm can be used on the transformed graph?

Dijkstra’s Algorithm is Faster

Well, the reason being, the latter SSSP algorithm, namely Dijkstra’s, is much faster than Bellman-Ford. So, if we need to find shortest paths many times, then it is better that first we apply a bit more expensive SSSP alogorithm – Bellman-Ford to get the graph ready to work with Dijkstra’s algorithm. Then we execute much cheaper Dijkstra’s algorithm on this transformed graph, as many times as we want – later.

Sparse Graph

But in such a situation is it not better to run an ALL-Pairs Shortest Paths (APSP) algorithm like Floyd-Warshall? After all, Floyd-Warshall can compute APSP at a cost of O(V3) while Bellman-Ford costs O(|V| * |E|) that can shoot up to O(V3), when E=|V|2 for a dense graph.

Yes, that is correct. For a dense graph Johnson’s algorithm won’t possibly be useful. Johnson’s algorithm is preferable for a sparse graph when Bellman-Ford is reasonably efficient to work with it.

Index

Dijkstra’s Algorithm

10th Friday Fun Session – 17th Mar 2017

Dijkstra’s algorithm is a Single-Source Shortest Path (SSSP) algorithm developed by Edsger Wybe Dijkstra. It uses a greedy process and yet finds the optimal solution. It looks similar to Breadth-first search.

Compare to Bellman-Ford

It is asymptotically the fastest SSSP algorithm, at a cost O(|E|+|V|log|V|), when min-priority queue implemented by Fibonacci heap is used.

That is quite cheap, given Bellman-Ford’s complexity of O(|V||E|) to find the same, something that can become prohibitively expensive for a dense graph having |V|2 edges.

However, while Bellman-Ford can work with negative edge and can detect negative cycle, Dijkstra’s algorithm cannot work with negative edge. Since it cannot work with negative edge, there is no question of detecting negative cycle at all.

Standard Algorithm

dist[] //shortest path vector

p[] //predecessor vector, used to reconstruct the path

Q //vertex set

for each vertex v in Graph
  dist[v] = ∞
  p[v] = undefined
  add v to Q

dist[s] = 0

while Q is not empty
  u = vertex with min dist[] value
  remove u from Q

  for each neighbor v of u
    alt = dist[u] + weight(u, v)
    if alt < dist[v]
      dist[v] = alt
      p[v] = u

return dist[], p[]

Given source vertex s, it finds the shortest distance from s to all other vertices. At first, it initializes dist[] vector to infinite to mean that it cannot reach any other vertex. And sets dist[s] = 0 to mean that it can reach itself at a cost of 0, the cheapest. All vertices including itself are added to the vertex set Q.

Then, it chooses the vertex with min dist[] value. At first, s (set to u) would be chosen. Then using each of the outgoing edges of u to v, it tries to minimize dist[v] by checking whether v can be reached via u using edge (u, v). If yes, dist[v] is updated. Then again it retrieves vertex u with the cheapest dist[u] value and repeats the same. This continues till Q is not empty. Whenever, a vertex u is removed from Q, it means that the shortest distance from s to u is found.

Since we are retrieving |V| vertices from Q, and for each vertex, trying with all its edges (=|V|, at max), to minimize distance to other vertices, the cost can be |V|2.

So, here we see a greedy process where it is retrieving the vertex with min dist[] value.

Since retrieving a vertex u from Q means that we found the minimum distance from s to u, if we are solving shortest path from a single source s to a single destination d, then when u matches the destination d, we are done and can exit.

It can also be noted that from source s, we find the shortest distances to all other vertices, in the ascending order of their distances.

Finally, we see that dist[] vector is continuously changing. And each time when we retrieve a vertex u, we choose the one with min dist[] value. That indicates using min-priority queue might be the right choice of data structure for this algorithm.

Using Fibonacci Heap

dist[] //shortest path vector
p[] //predecessor vector, used to reconstruct the path
Q //priority queue, implemented by Fibonacci Heap

dist[s] = 0

for each vertex v
  if(s != v)
    dist[v] = ∞
    p[v] = undefined
  
  Q.insert_with_priority(v, dist[v]) // insert

while Q.is_empty() = false
  u = Q.pull_with_min_priority() // find min and delete min
  
  for each neighbor v of u
    alt = dist[u] + weight(u, v)
    if alt < dist[v]
      dist[v] = alt
      p[v] = u
      Q.decrease_priority(v, alt) //decrease key

return dist[], p[]

In the above algorithm, we have used a function called decrease_priority(), something that is absent in standard priority queue but present in Fibonacci heap. So the above algorithm is implemented using Fibonacci heap.

Fibonacci heap is a special implementation of a priority queue that supports decrease key (decrease_priority()) operation. Meaning, we can decrease the value of a key while it is still inside the priority queue. And this can be achieved by using constant amortized time for insert, find min and decrease key operation and log (n) time for delete min operation.

As for cost, since we have called delete operation for each of the v vertices, and we have treated each of the |E| edges once, the cost here is O(|E|+|V|log|V|), as mentioned at the beginning of this post, as the cost of Dijkstra’s algorithm.

Using Standard Priority Queue

Standard priority queue implementation takes log (n) time for both insert and delete operation and constant time for find min operation. But there is no way to change the key value (decrease key) while the item is still in the priority queue, something Dijkstra’s algorithm might need to do quite frequently as we have already seen.

If standard priority queue is used, one has to delete the item from the priority queue and then insert into it again, costing log (n) each time, or an alternative to that effect. However, as long as standard priority queue is used, it is going to be slower than Fibonacci heap. With standard priority queue, the algorithm would look like below:

dist[] //shortest path vector
p[] //predecessor vector, used to reconstruct the path
Q //standard priority queue

for each vertex v
  dist[v] = ∞
  p[v] = undefined

dist[u] = 0
Q.insert_with_priority(u, dist[u]) // insert

while Q.is_empty() = false
  u = Q.pull_with_min_priority() // find min and delete min
  
  for each neighbor v of u
    alt = dist[u] + weight(u, v)
    if alt < dist[v]
      dist[v] = alt
      p[v] = u
      insert_with_priority(v, alt) //insert v 
                                     even if already exists 
return dist[], p[]

There are two differences from the earlier algorithm:

First, we have not inserted all vertices into the standard priority queue at first, rather inserted the source only.

Second, instead of decreasing priority that we cannot do using standard priority queue, we have kept on inserting vertex v when dist[v] decreases. That might mean, inserting a vertex v again while it is already there inside the queue with a higher priority/dist[v]. That is another way of pushing aside the old entry (same v but with higher priority) out of consideration for the algorithm. When shortest distances from source s to all other vertices v are found, those pushed aside vertices will be pulled one by one from the priority queue and removed. They will not affect dist[] vector anymore. And thus the queue will be emptied and the algorithm will exit.

Negative Edge

Please check Dijkstra’s Problem with Negative Edge for further details.

Index